Machine learning methods in chemoinformatics

نویسنده

  • John B. O. Mitchell
چکیده

Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure-activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two New Graph Kernels and Applications to Chemoinformatics

Chemoinformatics is a well established research field concerned with the discovery of molecule’s properties through informational techniques. Computer science’s research fields mainly concerned by the chemoinformatics field are machine learning and graph theory. From this point of view, graph kernels provide a nice framework combining machine learning techniques with graph theory. Such kernels ...

متن کامل

Deep Learning in Chemoinformatics using Tensor Flow

OF THE THESIS Deep Learning in Chemoinformatics using Tensor Flow By Akshay Jain Master of Science in Computer Science University of California, Irvine, 2017 Professor Pierre Baldi, Chair One of the widely discussed problems in the field of chemoinformatics is the prediction of molecular properties. These properties can range from physical, chemical, or biological properties of molecules to the...

متن کامل

Relevant Cycle Hypergraph Representation for Molecules

Chemoinformatics aims to predict molecule’s properties through informational methods. Some methods base their prediction model on the comparison of molecular graphs. Considering such a molecular representation, graph kernels provide a nice framework which allows to combine machine learning techniques with graph theory. Despite the fact that molecular graph encodes all structural information of ...

متن کامل

Two new graphs kernels in chemoinformatics

Chemoinformatics is a well established research field concerned with the discovery of molecule’s properties through informational techniques. Computer science’s research fields mainly concerned by chemoinformatics are machine learning and graph theory. From this point of view, graph kernels provide a nice framework combining machine learning graph theory techniques. Such kernels prove their eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014